53. Lustig, D.R.; Chen, F.; Zhang, W.; Bird, O.F.; Fajardo Jr., J.; Ardo, S.; Hu, S.; Talin, A.A.; Bala Chandran, R.; Sambur, J.B. “Models and Measurements Quantify Photon Recycling, Charge-Carrier Diffusion, and Photon Scattering Contributions to Photoluminescence in InP Nanowire Arrays” 2024, submitted.
52. Banik, A.; Maekawa, H.; Fajardo, J.; Zutter, B.; Alcorn, F.; Kumar, S.; Watanabe, K.; Kudo, A.; Ge, N.; Talin, A.; Sambur, J.B. “Unequal {110} Facets: The Critical Role of Surface Termination in Determining Photoelectrochemical Activity of Single BiVO4 Particles” 2024, accepted.
51. Almaraz, R.; Sayer, T.; Toole, J.; Tews, A.; Montoya-Castillo, A.; Sambur, J.B. “Charge Equilibration at Semiconductor-Redox Electrolyte Interfaces Drives Band Edge Movement via the Band Gap Renormalization Effect” 2024, submitted.
50. Austin, R.; Sayer, T.; Farah, Y.; Montoya-Castillo, A.; Krummel, A.T.; Sambur, J.B. “Hiding in Plain Sight: The prevalence and impacts of many-body effects in Transient Absorption Spectroscopy Experiments of 2D Semiconductors” J Chem Phys, 2024, accepted.
49. Lustig, D.R.; Buz, E.; Mulvey, J.T.; Patterson, J.P.; Kittilstved, K.R.; Sambur, J.B. “Characterizing the Ligand Shell Morphology of PEG-coated ZnO Nanocrystals using FRET Spectroscopy” J Phys Chem B, 2023, 127, 41, 8961–8973.
48. Toole, J.; Sambur, J.B.; “Anodic dissolution rates accelerate with decreasing MoS2 nanoflake thickness” J. Electrochem. Soc. 2023 170 116501.
47. J.B. Sambur, Brgoch, J.; “Unveiling the Hidden Influence of Defects via Experiment and Data Science” Chem Mater, 2023 35 (18), 7351-7354.
46. Almaraz, R.; Sayer, T.; Toole, J.; Austin, R.; Farah, Y.; Trainor, N.; Redwing, J. M.; Krummel, A.; Montoya-Castillo, A.; Sambur, J.B.. “Quantifying Interfacial Energetics of 2D Semiconductor Electrodes Using in Situ Spectroelectrochemistry and Many-Body Theory” Energy Environ. Sci., 2023, Advance Article .
45. Sayer, T.,; Farah, Y.R.; Austin, R.; Sambur, J.B.; Krummel, A.T.; Montoya-Castillo, A.; “Trion formation resolves observed peak shifts in the optical spectra of transition metal dichalcogenides” Nano Letters, 2023, 23, 6035–6041.
44. Lustig, D.R.; Nilsson, Z.N.; Mulvey, J.T.; Zang, W.; Pan, X.; Patterson, J.P.; Sambur, J.B. “Towards Imaging Defect-Mediated Energy Transfer Between Single Nanocrystal Donors and Single Molecule Acceptors” Chem. Biomed. Imaging 2023, 1, 2, 168–178.
43. Austin, R.; Farah, Y.R.; Sayer, T.; Luther, B.M.; Montoya-Castillo, A.; Krummel, A.T.; Sambur, J.B. “Hot carrier extraction from 2D semiconductor photoelectrodes” PNAS, 2023, 120 (15) e2220333120.
42. Salzer, L.D.; Diamond, B.; Nieto, K.; Evans, R.C.; Prieto, A.L.; Sambur, J.B.; “Structure-property relationships in high-rate anode materials based on niobium tungsten oxide shear structures“ACS Appl. Energy Mater. 2023 6, 3, 1685–1691.
41. Van Erdewyk, M.; Lorenz, D.; Sambur, J.B.; “Answering old questions with new techniques: understanding performance-limiting factors in transition metal dichalcogenide photoelectrochemical solar cells” Current Opinion in Electrochemistry, 2023, 37, 101173.
40. Marquez, S; Varra, T; Christensen, C; Rajasekharan, O; Dojan, C; Hobbs, J; Otten, A; Salzer, L; Schuttlefield-Christus, J.D; Sambur, J.B.; “LBIC Imaging of Solar Cells: An Introduction to Scanning Probe-based Imaging Techniques” J Chem Ed, 2023. 100, 2, 1011–1016.
39. Van Erdewyk, M.; Sambur, J.B.; “Molecular Reaction Imaging of a Surface Recombination Process Explains Performance Variation Among Smooth MoS2 Photoelectrodes“J. Electrochem. Soc., 2022, 169 096519.
38. Van Erdewyk, M.; Sambur, J.B.; “Single nanoflake photoelectrochemistry reveals intra-nanoflake doping heterogeneity that explains ensemble-level photoelectrochemical behavior” ACS Appl. Mater. Interfaces, 2022, 14, 20, 22737–22746.
37. R. C. Evans; Austin R.; Miller R.C.; Preston, A.; Nilsson Z.N.; Ma, K.; Sambur, J.B.; “Surface Facet-Dependent Electrochromic Properties of WO3 Nanorod Thin Films: Implications for Smart Windows” ACS Applied Nano Materials, 2021, 4, 4, 3750–3759.
36. Cashen, C.; R. C. Evans; Nilsson, Z.; Sambur, J.B.; “Local substrate heterogeneity influences electrochemical activity of TEM grid-supported battery particles” Frontiers in Chemistry, 2021, 9, 651248.
35. Nilsson, Z.; Beck, L.M.; Sambur, J.B.; “Ensemble-level energy transfer measurements can reveal the spatial distribution of defect sites in semiconductor nanocrystals” J Chem Phys 2021, 154, 054704.
34. Nilsson, Z.; Van Erdewyk M.; Wang,L; Sambur, J.B.; “Molecular Reaction Imaging of Single-Entity Photoelectrodes” ACS Energy Lett, 2020, 5, 5, 1474–1486.
33. Wang,L; Nilsson, Z.; Tahir, M; Chen, H; Sambur, J.B.; “Influence of the substrate on the optical and photoelectrochemical properties of monolayer MoS2” ACS Appl. Mater. Interfaces, 2020, 12 (13), 15034-15042.
32. Evans, R.C.; Nilsson, Z.; Balch, B.; Wang,L; Neilson, J.R.; Weinberger, C.R.; Sambur, J.B.; “Quantifying Capacitive-like and Battery-like Charge Storage Contributions Using Single Nanoparticle Electro-optical Imaging” ChemElectroChem, 2020, 7 (3), 753-760.
31. Varra, T; Simpson, A; Roesler, B.; Nilsson, Z.; Ryan, D; Van Erdewyk M.; Schuttlefield Christus, J.D.; Sambur, J.B.; “A homemade smart phone microscope for single particle fluorescence microscopy” J Chem. Ed., 2020, 97 (2), 471-478.
30. Wang,L; Tahir, M; Chen, H; Sambur, J.B.; “Probing charge carrier transport and recombination pathways in monolayer MoS2/WS2 heterojunction photoelectrodes” Nano Lett. 2019, 19 (12), 9084-9094.
29. Evans, R.C.; Nilsson, Z.; Sambur, J.B.; “High-throughput single nanoparticle electrochemistry using widefield electro-optical imaging” Anal Chem 2019, 91 (23), 14983-14991.
28. Wang,L; Schmid,M; Sambur, J.B.; “Single nanoparticle photoelectrochemistry: what is next?” J Chem Phys, 2019, 151, 180901. (Invited perspective article).
27. Wang,L; Schmid,M; Tahir, M; Chen, H; Sambur, J.B.; “Laser Annealing Improves Photoelectrochemical Activity of Ultrathin MoSe2 Photoelectrodes” ACS Appl. Mater. Interfaces, 2019, 11 (21), 19207-19217.
26. Evans, R.C.; Ellingworth, A.; Cashen, C.J.; Weinberger, C.R.; Sambur, J.B. “Influence of single nanoparticle electrochromic dynamics on the durability and speed of smart windows” Proc. Natl. Acad. Sci., 2019, .
News Highlights: see news articles about Colby’s work here:
- “Chemists could make ‘smart glass’ smarter by manipulating it at the nanoscale” – CSU Source, Anne Manning.
- The story was also highlighted by ScienceDaily and Nanowerk News.
25. Wang, L.; Sambur, J.B.; “Efficient Ultrathin Liquid Junction Photovoltaics Based on Transition Metal Dichalcogenides” Nano Letters, 2019, 19 (5), 2960–2967.
24. Sambur, J.B.; Shepherd, D.P.; Hesari, M; Van Erdewyk, M.; Choudhary, E.; Chen, P.; “Correlated Single-Molecule Reaction Imaging and Photocurrent Measurements Reveal Underlying Rate Processes in Photoelectrochemical Water Splitting” J Electrochem Soc., 2019. 166 (5), H3286-H3293.
23. Chen, J.; Bailey, C.S.; Hong, Y.; Wang, L.; Cai, Z.; Shen, L.; Hou, B.; Wang, Y.; Shi, H.; Sambur, J.B.; Ren, W.; Pop, E.; Cronin, S.B.; “Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe2” ACS Photonics., 2019. 6 (3), pp 787-792.
22. Isenberg, A. E.; Todt, M. A.; Wang, L.; Sambur, J. B.; “The Role of Photogenerated Iodine on the Energy Conversion Properties of MoSe2 Nanoflake Liquid Junction Photovoltaics” ACS Appl. Mater. Interfaces., 2018. 10 (33), pp 27780–27786.
21. Todt, M.A., Isenberg, A., Miller, E.M., Nanayakkara, S.U., Sambur, J.B.; “Single Nanoflake Photoelectrochemistry Reveals Champion and Spectator Nanoflakes in Exfoliated MoSe2 Films” J. Phys. Chem. C., 2018, 122 (12), pp 6539–6545.
20. Klunder, K.J., Nilsson, Z., Sambur, J.B., Henry, C.S.; “Patternable Solvent-Processed Thermoplastic Graphite Electrodes” J. Am. Chem. Soc., 2017, 139, pp 12623–12631.
Graduate & Postdoctoral Work
19. Hesari, M., Sambur, J.B.,Mao, X., Jung, W., Chen, P.; “Quantifying Photocurrent Loss of a Single Particle-Particle Interface in Nanostructured Photoelectrodes”Nano Letters, 2019, 19 (2), 958–962.
18. Guanqun, C., Zhou, N., Chen, B., Sambur, J.B., Choudhary, E., Chen, P.; “Bimetallic Effect of Single Nanocatalysts Visualized by Super-Resolution Catalysis Imaging” ACS Cent. Sci., 2017, 3 (11), pp 1189–1197.
17. Sambur, J.B.; Chen, P.; “Distinguishing between direct and indirect photoelectrocatalytic oxidation mechanisms using quantitative single-molecule reaction imaging and photocurrent measurements” J. Phys. Chem. C., 2016, 120, 20668-20676.
- This article is part of the Richard P. Van Duyne Festschrift
16. Sambur, J.B.; Chen, T.Y.; Choudhary, E.; Chen, G.; Nissen, E.J.; Thomas, E.M.; Zou, N.; Chen, P.; “Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes” Nature, 2016, 530, 77-80.
- News Highlights: Science (Placing the catalyst where it’s needed), Nature News and Views (Electrochemistry: Photocatalysts in close-up), C&ENews (Fluorescence Method Maps Reactivity Hot Spots On A Catalyst’s Surface), Cornell Chronicle (Researchers seek efficient means of splitting water).
15. Sambur, J.B.; Parkinson, B.A.; “Size Selective Photoetching of CdSe Quantum Dot Sensitizers on Single-Crystal TiO2” ACS Appl. Mater. Interfaces, 2015, 6, 21916.
14. Sambur, J.B.; Chen, P.; “Approaches to Single-Nanoparticle Catalysis” Ann. Rev. Phys. Chem., 2014, 65, 395.
13. Shepherd, D.; Sambur, J.B.; Liang, Y.; Parkinson, B.A.; Van Orden, A., “In-Situ Studies of Photoluminescence Quenching in Quantum Dot Sensitized Single Crystal TiO2 and ZnO Electrodes” 2012, J. Phys. Chem. C., 116, 21069.
12. Schuttlefield, J.D.; Sambur, J.B.; Gelwicks, M.; Eggleston, C.M.; Parkinson, B.A., “Photooxidation of Chloride by Oxide Minerals: Implications for Perchlorate on Mars” J. Am. Chem. Soc., 2011, 133, 17521.
11. Sambur, J.B.; Averill, C.M.; Bradley, C.; Schuttlefield, J.; Lee, S.H.; Reynolds, J.R.; Schanze, K.S.; Parkinson, B.A., “Interfacial Morphology and Photoelectrochemistry of Conjugated Polyelectrolytes Adsorbed on Single Crystal TiO2” Langmuir, 2011, 27, 11906.
10. Riha, S.; Fredrick, S.; Sambur, J.B.; Liu, Y.; Prieto, A.; Parkinson, B.A., “Photoelectrochemical Characterization of Nanocrystalline Thin Film Cu2ZnSnS4 Photocathodes” ACS Appl. Mater. Interfaces, 2011, 3, 58.
9. Sambur, J. B.; Novet, T.; Parkinson, B. A., “Multiple Exciton Collection in a Sensitized Photovoltaic System” Science 2010, 330, 63.
- News Highlights: C&ENews (Solar Cell Captures Multiple Excitations), PhysOrg (‘Multiple exciton collection’ could result in more efficient solar cells), Wyoming Tribune Eagle (Bright idea puts UW professor in international spotlight)
8. Manandhar, K.; Sambur, J. B.; Parkinson, B. A., “Morphologies, structures, and interfacial electronic structure of perylene on Au(111)” J. Appl. Phys. 2010, 107, 063716.
7. Sambur, J. B.; Parkinson, B. A., “CdSe/ZnS Core/Shell Quantum Dot Sensitization of Low Index TiO2 Single Crystal Surfaces” J. Am. Chem. Soc. 2010, 132, 2130.
6. Sambur, J. B.; Riha, S. C.; Choi, D.; Parkinson, B. A., “Influence of Surface Chemistry on the Binding and Electronic Coupling of CdSe Quantum Dots to Single Crystal TiO2 Surfaces” Langmuir 2010, 26, 4839.
5. Jäckel, B.; Sambur, J.B.; and Parkinson, B.A., “A Photoemission Study of the Morphology and Barrier Heights of the Interface Between Chrysene and Inert Substrates” J. Phys. Chem B., 2009, 113, 1837.
4. Jäckel, B.; Sambur, J. B.; Parkinson, B. A., “The Influence of Metal Work Function on the Barrier Heights of Metal/Pentacene Junctions” J. Appl. Phys. 2008, 103, 063719.
3. Jäckel, B.; Sambur, J. B.; Parkinson, B. A., “Ubiquitous Pentacene Monolayer on Metals Deposited onto Pentacene Films” Langmuir 2007, 23, 11366.
2. Sambur, J. B.; Doetschman, D. C.; Yang, S. W.; Schulte, J. T.; Jones, B. R.; DeCoste, J. B., “Multiple Effects of the Presence of Water on the Nucleophilic Substitution Reactions of NaX Faujasite Zeolite with Dimethylmethylphosphonate (DMMP)” Microporous and Mesoporous Materials 2008, 112, 116.
1. Yang, S.W.; Doetschman, D.C.; Schulte, J.T.; Sambur, J.B.; Kanyi, C.W.; Fox, J.D.; Kowenje, C.O.; Jones, B.R.; Sharma, N.D.; “Sodium X-type Faujasite Zeolite Decomposition of Dimethylmethylphosphonate (DMMP) to Methylphosphonate: Nucleophilic Zeolite Reactions 1” Microporous and Mesoporous Materials 2006, 92, 56.